Motor servo industrial monofásico 400W SGMAH-08AAF41 del motor servo de Yaskawa 0.75kW
DETALLES RÁPIDOS
Fabricante: Yaskawa
Número del producto: SGMAH-08AAF41
Descripción: SGMAH-08AAF41 es un servo Motor-CA manufacturado por Yaskawa
Tipo del servomotor: Sigma II de SGMAH
Salida nominal: 750W (1.0HP)
Fuente de alimentación: 200V
Velocidad de la salida: 5000 RPM
Grado del esfuerzo de torsión: 7,1 nanómetro
Temperatura de funcionamiento mínima: 0 °C
Temperatura de funcionamiento máximo: °C +40
Peso: 8 libras
Altura: 3,15 adentro
Anchura: 7,28 adentro
Profundidad: 3,15 adentro
Especificaciones del codificador: pedazo 13 (2048 x 4) codificador ampliado; Estándar
Nivel de la revisión: F
Especificaciones del eje: Eje recto con la chavetera (no disponible con el nivel de la revisión N)
Accesorios: Estándar; sin el freno
Opción: Ninguno
Tipo: ningunos
OTROS PRODUCTOS SUPERIORES
Motor de Yasakawa, SG del conductor |
Motor HC-, ha de Mitsubishi |
Módulos 1C-, 5X- de Westinghouse |
Emerson VE, KJ |
Honeywell TC, TK |
Módulos IC de GE - |
Motor A0- de Fanuc |
Transmisor EJA- de Yokogawa |
Productos similares
SGMAH-04AAAHB61 |
SGMAH-04ABA21 |
SGMAH-04ABA41 |
SGMAH-04ABA-ND11 |
SGMAH-07ABA-NT12 |
SGMAH-08A1A21 |
SGMAH-08A1A2C |
SGMAH-08A1A61D-0Y |
SGMAH-08A1A6C |
SGMAH-08A1A-DH21 |
SGMAH-08AAA21 |
SGMAH-08AAA21+ SGDM-08ADA |
SGMAH-08AAA2C |
SGMAH-08AAA41 |
SGMAH-08AAA41+ SGDM-08ADA |
SGMAH-08AAA41-Y1 |
SGMAH-08AAA4C |
SGMAH-08AAAH761 |
SGMAH-08AAAHB61 |
SGMAH-08AAAHC6B |
SGMAH-08AAAYU41 |
SGMAH-08AAF4C |
SGMAH-A3A1A21 |
SGMAH-A3A1A21+SGDM-A3ADA |
SGMAH-A3A1A41 |
SGMAH-A3A1AJ361 |
SGMAH-A3AAA21 |
SGMAH-A3AAA21-SY11 |
SGMAH-A3AAA2S |
SGMAH-A3AAAH761 |
SGMAH-A3AAA-SY11 |
SGMAH-A3AAA-YB11 |
SGMAH-A3B1A41 |
SGMAH-A3BAA21 |
SGMAH-A3BBAG761 |
SGMAH-A5A1A-AD11 |
SGMAH-A5A1AJ721 |
SGMAH-A5A1A-YB11 |
SGMAH-A5A1A-YR61 |
Discutamos porqué uno pudo querer introducir un factor integral en el aumento (a) del control. El diagrama presagiado muestra un infinito inminente mientras que la frecuencia se acerca a cero. Teóricamente, va al infinito en DC porque si uno pusiera un pequeño error en una combinación de la impulsión/del motor del lazo abierto para hacerla moverse, continuaría moviéndose para siempre (la posición conseguiría más grande y más grande). Esta es la razón por la cual un motor se clasifica como integrador sí mismo - integra el pequeño error de posición. Si uno cierra el lazo, éste tiene el efecto de conducir el error a cero puesto que cualquier error hará eventual el movimiento en la dirección apropiada traer F en coincidencia con la C. ¡El sistema vendrá solamente descansar cuando el error es exacto cero! La suena genial de la teoría, pero en práctica real el error no va a cero. Para hacer el motor moverse, el error se amplifica y genera un esfuerzo de torsión en el motor. Cuando la fricción está presente, que el esfuerzo de torsión debe ser bastante grande superar esa fricción. El motor para el actuar como integrador en el punto donde está el error apenas debajo del punto requerido para inducir al suficiente esfuerzo de torsión que rompa la fricción. El sistema se sentará allí con ese error y esfuerzo de torsión, pero no se moverá.
Las secuencias de la excitación para los modos antedichos de la impulsión se resumen en el cuadro 1.
En la impulsión de Microstepping las corrientes en las bobinas están variando continuamente para poder romper para arriba un paso completo en muchos pasos discretos más pequeños. Más información sobre microstepping puede ser
encontrado en el capítulo microstepping. Apriete contra, pesque las características con caña
El esfuerzo de torsión contra características del ángulo de un motor de pasos es la relación entre la dislocación del rotor y el esfuerzo de torsión que se aplicaron al eje de rotor cuando el motor de pasos se activa en su voltaje clasificado. Un motor de pasos ideal tiene un esfuerzo de torsión sinusoidal contra característica de la dislocación tal y como se muestra en del cuadro 8.
Las posiciones A y C representan puntos de equilibrio estables cuando no se aplica ninguna fuerza externa o carga al rotor
eje. Cuando usted aplica una fuerza externa TA al eje del motor que usted esencialmente crea una dislocación angular, Θa
. Esta dislocación angular, Θa, se refiere como avance o se retrasa ángulo dependiendo de si el motor es activamente de aceleración o de desaceleración. Cuando el rotor para con una carga aplicada vendrá descansar en la posición definida por este ángulo de la dislocación. El motor desarrolla un esfuerzo de torsión, TA, en la oposición a la fuerza externa aplicada para equilibrar la carga. Mientras que se aumenta la carga el ángulo de la dislocación también aumenta hasta que alcance el máximo que lleva a cabo el esfuerzo de torsión, Th, del motor. Una vez que se excede el Th el motor incorpora una región inestable. En esta región que un esfuerzo de torsión es la dirección opuesta se crea y los saltos del rotor sobre el punto inestable al punto estable siguiente.
MOTOR SLIP
El rotor en un motor de inducción no puede dar vuelta a la velocidad síncrona. Para
induzca a un EMF en el rotor, el rotor debe mover más lento que los SS. Si el rotor estaba a
de alguna manera la vuelta en los SS, el EMF no se podía inducir en el rotor y por lo tanto el rotor
pararía. Sin embargo, si el rotor paró o aún si se redujo perceptiblemente, un EMF
sea inducido de nuevo en las barras del rotor y comenzaría a girar a una velocidad menos
que los SS.
La relación entre la velocidad del rotor y los SS se llama el resbalón. Típicamente,
El resbalón se expresa como porcentaje de los SS. La ecuación para el resbalón del motor es:
EL 2% S = (SS – RS) X100
SS
Dónde:
%S = resbalón del por ciento
SS = velocidad síncrona (RPM)
RS = velocidad del rotor (RPM)